
2019-11-11

1

ECE 150 Fundamentals of Programming

Prof. Hiren Patel, Ph.D.

Douglas Wilhelm Harder, M.Math. LEL

hdpatel@uwaterloo.ca dwharder@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Integer primitive
data types

2
Integer primitive data types

Outline

• In this lesson, we will:

– Learn the representation of unsigned integers

– Describe how integer addition and subtraction is performed

• This requires the 2’s complement representation

– Use 2’s complement to store negative numbers for signed integers

– Describe the ranges stored by the four integer types

• Both unsigned and signed

3
Integer primitive data types

Clock arithmetic

• Suppose we have a clock face, but define 12 o’clock as “0” o’clock

– The Europeans and military already do this…

• You know that:

– 5 hours after 9 o’clock is 2 o’clock

– 7 hours before 3 o’clock is 8 o’clock

– Specifically:

• 1 hour before 0 o’clock is 11 o’clock

• 1 hour after 11 o’clock is 0 o’clock

• This is arithmetic modulo 12

4
Integer primitive data types

int and long

• We have seen integer data types up to this point:

int

unsigned int

long

unsigned long

• It has been suggested that

– An unsigned integer stores only positive numbers (0, 1, 2, …)

– A long can store more information than an int

• We will now see how integers are stored in the computer

2019-11-11

2

5
Integer primitive data types

Binary representations

• We have already described binary numbers

– On the computer, all integers are stored in binary

– Thus, to store each of these numbers, we must store the
corresponding binary digits (bits):

3 11 2

42 101010 6

616 1001101000 10

299792458 10001110111100111100001001010 29

– To store a googol (10100), we must store 333 bits:

10010010010011010110100100101100101001100001101111100111…
01011000010110010011110000100110001001100111000001011111…
10011100010101100111001000000100011100010000100011010011…
11100101010101011001001000011000010001010100000101110100…
011110001000…
000

6
Integer primitive data types

Storage

• Do we store as many bits as are necessary?

– You could, but this would be exceedingly difficult to manage

• Instead, each primitive data type has a fixed amount of storage

– 8 bits are defined as 1 byte

– All data types are an integral number of bytes

• Usually 1, 2, 4, 8 or 16 bytes

• Because we use binary, powers of 2 are very common:

Exponent Decimal Binary
20 1 1
21 2 10
22 4 100
23 8 1000
24 16 10000
25 32 100000
26 64 1000000

7
Integer primitive data types

unsigned int

• A variable is declared unsigned int is allocated four bytes

– 4 bytes is 4 × 8 = 32 bits

– 32 different 1s and 0s can be stored

– The smallest and largest:

00000000000000000000000000000000

11111111111111111111111111111111

– The smallest represents 0

– The largest is one less than

– This equals 232, thus, the largest value that can be stored as an
unsigned int is 232 – 1 = 4294967295

• Approximately 4 billion

32 zeros

100000000000000000000000000000000

8
Integer primitive data types

unsigned short

• Sometimes, you don’t need to store numbers this large

• Variables declared unsigned short are allocated two bytes

– 2 bytes is 2 × 8 = 16 bits

– 16 different 1s and 0s can be stored

– The smallest and largest:

0000000000000000

1111111111111111

– The smallest represents 0

– The largest is one less than

– This equals 216, thus, the largest value that can be stored as an
unsigned int is 216 – 1 = 65535

16 zeros

10000000000000000

2019-11-11

3

9
Integer primitive data types

unsigned long

• Sometimes, you need to store very large numbers

• Variables declared unsigned long are allocated eight bytes

– 8 bytes is 8 × 8 = 64 bits

– 64 different 1s and 0s can be stored

– The smallest and largest:

00

11

– The smallest represents 0

– The largest is one less than

– This equals 264, thus, the largest value that can be stored as an
unsigned int is 264 – 1 = 18446744073709551615

• This 18 billion billion or 18 quintillion

64 zeros

1 00

10
Integer primitive data types

Example

• Consider this program:
#include <iostream>

// Function declarations

int main();

// Function definitions

int main() {

unsigned short a{42};

unsigned int b{207500};

unsigned long c{299792458};

std::cout << (a + b + c) << std::endl;

return 0;

}

Output:
300000000

Note:
First, a is upcast to unsigned int
before to the first addition
Then, the result is upcast to
unsigned long before the second addition

11
Integer primitive data types

Example

• On the stack, an appropriate number of bytes are allocated to each
variable

#include <iostream>

// Function declarations

int main();

// Function definitions

int main() {

unsigned short a{42};

unsigned int b{207500};

unsigned long c{299792458};

std::cout << (a + b + c) << std::endl;

return 0;

}

12
Integer primitive data types

Example

• Each of these variables is then initialized

#include <iostream>

// Function declarations

int main();

// Function definitions

int main() {

unsigned short a{42};

unsigned int b{207500};

unsigned long c{299792458};

std::cout << (a + b + c) << std::endl;

return 0;

}

2019-11-11

4

13
Integer primitive data types

Example

• Generally, however, we display the bytes in memory as a column of
bytes, the values of which are concatenated

#include <iostream>

// Function declarations

int main();

// Function definitions

int main() {

unsigned short a{42};

unsigned int b{207500};

unsigned long c{299792458};

std::cout << (a + b + c) << std::endl;

return 0;

}

14
Integer primitive data types

Wasted space?

• If an integer does not use all the bytes, the remaining bits are never-
the-less allocated until the variable goes out of scope

– In general-purpose computing, this is often not a problem

– This is a critical issue, however, in embedded systems

• More memory:

– Costs more

– Uses more power

– Produces more heat

15
Integer primitive data types

Determining the size of a type

• We have said short, int and long are 2, 4 and 8 bytes

– This is true on most every general-purpose computer

• Unfortunately, the C++ specification doesn’t require this

– Fortunately, the sizeof operator gives you this information
#include <iostream>

int main();

int main() {

std::cout << "An 'unsigned short' occupies "

<< sizeof (unsigned short) << " bytes" << std::endl;

std::cout << "An 'unsigned int' occupies "

<< sizeof (unsigned int) << " bytes" << std::endl;

std::cout << "An 'unsigned long' occupies "

<< sizeof (unsigned long) << " bytes" << std::endl;

return 0;

} Output on ecelinux:
An 'unsigned short' occupies 2 bytes
An 'unsigned int' occupies 4 bytes
An 'unsigned long' occupies 8 bytes

16
Integer primitive data types

Memory and initial values

• Question:

– What happens if the initial value cannot be stored?

#include <iostream>

int main();

int main() {

unsigned short c{299792458};

std::cout << "The speed of light is " << c

<< " m/s." << std::endl;

return 0;

}

2019-11-11

5

17
Integer primitive data types

Memory and initial values

• Fortunately, you get a warning:
example.cpp: In function 'int main()':

example.cpp:6:31: warning: narrowing conversion of â299792458â from 'int' to
'short unsigned int' inside { } [-Wnarrowing]

unsigned short c{299792458};

^

example.cpp:6:31: warning: large integer implicitly truncated to unsigned

type [-Woverflow]

• It still compiles and executes:

The speed of light is 30794 m/s.

18
Integer primitive data types

Memory and initial values

• Where does 30794 come from?

• The binary number 0b111100001001010 equals 30794 in base 10

19
Integer primitive data types

Memory and initial values

• Important:

All unsigned integers are stored:
modulo 216 for unsigned short

modulo 232 for unsigned int

modulo 264 for unsigned long

20
Integer primitive data types

Memory and arithmetic

• What happens if the sum, difference or product of two integers
exceeds what can be stored?

#include <iostream>

int main();

int main() {

unsigned short m1{40000}, m2{42000};

int n1{40000}, n2{42000};

unsigned short sum{m1 + m2}, diff{m1 - m2}, prod{m1*m2};

std::cout << sum << "\t" << (n1 + n2) << std::endl;

std::cout << diff << "\t" << (n1 - n2) << std::endl;

std::cout << prod << "\t" << (n1*n2) << std::endl;

return 0;

}

Output:
16464 82000
63536 -2000
50176 1680000000

2019-11-11

6

21
Integer primitive data types

Memory and arithmetic

• Let’s look at the actual values and the evaluated results:

16464 0100000001010000

82000 10100000001010000

63536 1111100000110000

–2000 -0000011111010000

50176 1100010000000000

1680000000 1100100001000101100010000000000

• For the sum and product, the result ignores the higher-order bits

– The negative number is a little odd….

22
Integer primitive data types

Memory and arithmetic

• What happens if the sum, difference or product of two integers
exceeds what can be stored?

#include <iostream>

int main();

int main() {

unsigned short smallest{0}, largest{65535};

std::cout << "Smallest: " << smallest << std::endl;

std::cout << "Largest: " << largest << std::endl;

--smallest;

++ largest;

std::cout << "Smallest minus 1: " << smallest << std::endl;

std::cout << "Largest plus 1: " << largest << std::endl;

return 0;

}

Output:
Smallest: 0
Largest: 65535
Smallest minus 1: 65535
Largest plus 1: 0

23
Integer primitive data types

Memory and arithmetic

• Important:

All unsigned integers arithmetic is performed:
modulo 216 for unsigned short

modulo 232 for unsigned int

modulo 264 for unsigned long

• This is similar to all clock arithmetic being performed modulo 12

24
Integer primitive data types

Addition

• Addition is easy:

– Like in elementary school, line them up and occasionally you require
a carry in the next column:

– The rules are:

• 0 + 0 → 0

• 0 + 1 → 1

• 1 + 1 → 10 → 0 with a carry of 1

• 1 + 1 + 1 → 11 → 1 with a carry of 1

– For example, adding two unsigned short:

1 1 1 1 1 1

0101000111010110

+ 1001101011000100

1110110010011010

20950

60570

39620

2019-11-11

7

25
Integer primitive data types

Addition

• What if we go over? Adding these two unsigned short:

1 1 1 1 1 1 1

1101000111010110

+ 1001101011000100

10110110010011010

• The additional bit is discarded—addition is calculated modulo 216

– Thus, the answer is 110110010011010 which is 27802

53718

93338

39620

26
Integer primitive data types

Subtraction

• Subtraction is more difficult:

– Like in elementary school, you learned to “borrow”, but borrowing
may require you to look way ahead:

0100000001010000

- 0001101011000101

?

– Our salvation: we are performing arithmetic modulo 65536

27
Integer primitive data types

Subtraction

• Going back to the clock:

– Subtracting 10 is the same as adding 2

– Subtracting 4 is the same as adding 8

– Subtracting 9 is the same as adding 3

• Thus, to subtract n, add 12 – n

• In our case, to subtract n, add 65536 – n

1 1 1 1 1

0100000001010000 0100000001010000

- 0001101011000101 + 1110010100111011

? 10010010110001011

– The answer is 0010010110001011

16464

6853 58683

9611

28
Integer primitive data types

Subtraction

• The million-dollar question:

How do you calculate 65536 – n???

• Subtract any number from 9999999999999, no borrows are needed

9999999999999

– 5501496383498

4498503616501

• Thus, to calculate 10000000000000 – n, instead calculate

(10000000000000 – 1) – n + 1 = (9999999999999 – n) + 1

• For example:

10000000000000

– 5501496383498

4498503616502

This is called the base-10 complement
or “10’s complement”

– this is how older adding machines
performed subtraction

2019-11-11

8

29
Integer primitive data types

Subtraction

• In binary, the equivalent is base-2 complement or “2’s complement”

– To calculate 65536 – 1970, calculate (65535 – 1970) + 1:

1111111111111111

– 0000011110110010

1111100001001101

+ 1

1111100001001110

• Thus, to calculate 2018 – 1970, just add the 2’s complement of 1970

to 2018:

0000011111100010

+ 1111100001001110

10000000000110000

• This is the binary representation of 48 = 25 + 24 = 32 + 16

– Remember, we ignore the leading 1

30
Integer primitive data types

2’s complement

• To calculate the 2’s complement:

1. Complement all of the bits in the number

• This includes leading zeros

2. Add 1

• For example, the 2’s complement of the speed of light is stored as an
unsigned int is

00010001110111100111100001001010

11101110001000011000011110110101

+ 1

11101110001000011000011110110110

31
Integer primitive data types

2’s complement

• There is a faster way to compute it without the addition:

– Scan from right-to-left

• Find the first 1, and then flip each bit to the left of that

• The 2’s complement of each of the following is given below it

1011011111011111

0100100000100001

1010111111100000

0101000000100000

0000100100101100

1111011011010100

32
Integer primitive data types

2’s complement

• The 2’s complement of 0 stored as an unsigned int is

00000000000000000000000000000000

11111111111111111111111111111111

+ 1

100000000000000000000000000000000

• This makes sense: any number minus zero is unchanged

2019-11-11

9

33
Integer primitive data types

2’s complement

• The 2’s complement algorithm is self-inverting:

– If n is a number, then 216 – (216 – n) = n

– The 2’s complement of the 2’s complement of a number is the
number itself

1110110010111110

0001001101000001

+ 1

0001001101000010

1110110010111101

+ 1

1110110010111110

• That is, f –1 = f or f(f(n)) = n

34
Integer primitive data types

Memory and arithmetic

• Try it yourself:
#include <iostream>

int main();

//

// Verify that every possible sum, difference,

// product, division and remainder option on

// 'unsigned short' is the actual operation

// modulo 65536

//

int main() {

long const TWO_15{32768};

long const TWO_16{2*TWO_15};

for (long i{0}; i < TWO_16; ++i) {

// Just print out the count when we get to multiples of 1024

if ((i % 1024) == 0) {

std::cout << i << std::endl;

}

for (long j{0}; j < TWO_16; ++j) {

unsigned short si{i};

unsigned short sj{j};

// Perform the sum as unsigned shorts and as signed longs

unsigned short sk{si + sj};

long k{(i + j) % TWO_16};

if (k < 0) {

k += TWO_16;

}

// If they differ, print out a warning

if (k != sk) {

std::cout << i << " + " << j << " = " << k

<< " != " << sk << std::endl;

}

// Perform the difference as unsigned shorts and as signed longs

sk = si - sj;
k = (i - j) % TWO_16;

if (k < 0) {

k += TWO_16;

}

// If they differ, print out a warning

if (k != sk) {

std::cout << i << " - " << j << " = " << k

<< " != " << sk << std::endl;

}

// Perform the difference as unsigned shorts and as signed longs

sk = si * sj;

k = (i * j) % TWO_16;

if (k < 0) {

k += TWO_16;

}

// If they differ, print out a warning

if (k != sk) {

std::cout << i << " * " << j << " = " << k

<< " != " << sk << std::endl;

}

// We cannot perform division or remainder when the

// second operand is zero, so skip these operations

if (j != 0) {

// Perform the division as unsigned shorts and as signed longs

sk = si / sj;

k = (i / j) % TWO_16;

if (k < 0) {

k += TWO_16;

}

// If they differ, print out a warning

if (k != sk) {

std::cout << i << " / " << j << " = " << k

<< " != " << sk << std::endl;

}

// Perform the remainder as unsigned shorts and as signed longs

sk = si % sj;

k = (i % j) % TWO_16;

if (k < 0) {

k += TWO_16;

}

// If they differ, print out a warning

if (k != sk) {

std::cout << i << " % " << j << " = " << k

<< " != " << sk << std::endl;

}

}

}

}

return 0;

}

35
Integer primitive data types

Summary so far

• We have the following:

– Unsigned integers are stored as either 1, 2, 4 or 8 bytes

– The value is stored in the binary representation

– You should not memorize the exact ranges

Type Bytes Bits Range
Approximate

Range

unsigned char 1 8 0, …, 28 – 1 0, …, 255

unsigned short 2 16 0, …, 216 – 1 0, …, 65535

unsigned int 4 32 0, …, 232 – 1 0, …, 4.3 billion

unsigned long 8 64 0, …, 264 – 1 0, …, 18 quintillion

36
Integer primitive data types

Useful tool…

• Note that 210 = 1024, so 210 ≈ 1000 = 103

– We can use this to estimate magnitudes:

• 212 = 22 210 ≈ 4× 1000 = 4000

• 216 = 26 210 ≈ 64× 1000 = 64000

• 224 = 24 220 = 24 (210)2 ≈ 16 × 10002 = 16 million

• 232 = 22 230 = 22 (210)3 ≈ 4 × 10003 = 4 billion

– This approximation will underestimate by approximately 2%

2019-11-11

10

37
Integer primitive data types

Signed types

• We’ve seen that short, int and long all allows you to store both
positive and negative integers

– How do we store such negative numbers?

• Because we have two choices (positive or negative), we could use one
bit to represent the sign: 0 for positive, 1 for negative

– For example:

32767 0111111111111111

2 0000000000000010

1 0000000000000001

0 0000000000000000

–0 ? 1000000000000000

–1 1000000000000001

–2 1000000000000010

–32768 1111111111111111

–0 = 0, so do we
have two zeros?

The sign bit

38
Integer primitive data types

Signed types

• This is similar to marking the hours of a clock as follows:

• Unfortunately, this leads to ugly arithmetic operations…

–1 + 1 = 0 or –0, but 7 + 1 = 8

–5 + 2 = –3, but 11 + 2 = 1

39
Integer primitive data types

Signed types

• A better solution:

• Note that

–1 + 1 = 0, but also 11 + 1 = 0

–5 + 2 = –3, but also 7 + 2 = 9, which we are equating to –3

40
Integer primitive data types

Signed integers

• Here is a workable solution:

– If the leading bit is 0:

• Assume the remainder of the number is the integer represented

• For short, this includes

0000000000000000 0

0111111111111111 215 – 1 = 32767

• This includes 215 different positive numbers

– If the leading bit is 1:

• Assume the number is negative and its magnitude can be found by
applying the 2’s complement algorithm

• Recall the 2’s complement algorithm is self-inverting

2019-11-11

11

41
Integer primitive data types

Signed integers

• For negative numbers stored as a short:

1000000000000000

0111111111111111

+ 1

1000000000000000

– This is the representation of the largest negative number: –215

1111111111111111

0000000000000000

+ 1

0000000000000001

– This is the representation of the smallest negative number: –1

42
Integer primitive data types

Signed integers

• Here, you can compare these two techniques

– In both cases, we go from –12/2 to 12/2 – 1 and –216/2 to 216/2 – 1

43
Integer primitive data types

Signed integers

• For example, 1111111111010110 is a negative short

1111111111010110

0000000000101001

+ 1

0000000000101010

• Thus, it represents –42

• Let’s calculate –42 + 91 = 49 and –42 – 91 = –133:

1111111111010110

+ 0000000001011011

10000000000110001

1111111111010110

+ 1111111110100101

11111111101111011

49

–91

10000101

133

–133

44
Integer primitive data types

Summary

• To summarize:

– Integer types are stored as either 1, 2, 4 or 8 bytes

– Negative numbers are stored in the 2’s complement representation

Type Bytes Bits Range
Approximate

Range

unsigned char 1 8 0, …, 28 – 1 0, …, 255

unsigned short 2 16 0, …, 216 – 1 0, …, 65535

unsigned int 4 32 0, …, 232 – 1 0, …, 4.3 billion

unsigned long 8 64 0, …, 264 – 1 0, …, 18 quintillion

signed char 1 8 –27, …, 27 – 1 –128, …, 127

short 2 16 –215, …, 215 – 1 –32768, …, 32767

int 4 32 –231, …, 231 – 1 –2.15 billion, …, 2.15 billion

long 8 64 –263, …, 263 – 1 –9 quintillion, …, 9 quintillion

2019-11-11

12

45
Integer primitive data types

Warning

• While common, the C++ standard does not require these sizes:

– Each compiler may choose sizes so long as the following are true:

assert(sizeof(char) == 1);

assert(sizeof(short) >= 2); // At least 16 bits

assert(sizeof(int) >= sizeof(short));

// At least as large as 'short'

assert(sizeof(long) >= 4); // At least 32 bits

assert(sizeof(long long) >= 8); // At least 64 bits

• In GNU g++, the sizes are as we have described in this slide deck

• In Microsoft Visual Studio, however:

– A long is only four bytes (same as int)

– A long long is eight bytes

– We do not use long long in this course

• You may have to use it if you program in Visual Studio

46
Integer primitive data types

Summary

• Following this lesson, you now

– Understand the representation of unsigned integers

– Know how to perform subtraction using 2’s complement

• Similar to 10’s complement used a century ago

– Understand that signed integers store negative numbers in their
2’s complement representation

– Know that char is actually just an integer type

• It can be interpreted as a printable character if necessary

– Understand the ranges stored by char, short, int and long

47
Integer primitive data types

References

[1] Wikipedia

https://en.wikipedia.org/wiki/Integer_(computer_science)

https://en.wikipedia.org/wiki/Two%27s_complement

48
Integer primitive data types

Acknowledgments

Theresa DeCola and Charlie Liu.

https://en.wikipedia.org/wiki/Integer_(computer_science)
https://en.wikipedia.org/wiki/Two's_complement

2019-11-11

13

49
Integer primitive data types

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

50
Integer primitive data types

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

