

- In this lesson, we will:
- Learn the representation of unsigned integers
- Describe how integer addition and subtraction is performed - This requires the 2's complement representation
- Use 2's complement to store negative numbers for signed integers
- Describe the ranges stored by the four integer types
- Both unsigned and signed

Clock arithmetic

- Suppose we have a clock face, but define 12 o'clock as "o" o'clock
- The Europeans and military already do this...

- You know that:
${ }^{6}$
- 5 hours after 9 o'clock is 2 o'clock
- 7 hours before 3 o'clock is 8 o'clock
- Specifically:
- 1 hour before o o'clock is 11 o'clock
- 1 hour after 11 o'clock is o o'clock
- This is arithmetic modulo 12
- We have already described binary numbers
- On the computer, all integers are stored in binary
- Thus, to store each of these numbers, we must store the corresponding binary digits (bits):

3	11	2
42	101010	6
616	1001101000	10
458	10001110111100111100001001010	29

- To store a googol (10^{100}), we must store 333 bits:
10010010010011010110100100101100101001100001101111100111... 01011000010110010011110000100110001001100111000001011111... 10011100010101100111001000000100011100010000100011010011... 11100101010101011001001000011000010001010100000101110100... 011110001000. 000

Storage

- Do we store as many bits as are necessary?
- You could, but this would be exceedingly difficult to manage
- Instead, each primitive data type has a fixed amount of storage
- 8 bits are defined as 1 byte
- All data types are an integral number of bytes
- Usually $1,2,4,8$ or 16 bytes
- Because we use binary, powers of 2 are very common:

Exponent	Decimal	Binary
2^{0}	1	1
2^{1}	2	10
2^{2}	4	100
2^{3}	8	1000
2^{4}	16	10000
2^{5}	32	100000
2^{6}	64	1000000

- A variable is declared unsigned int is allocated four bytes
-4 bytes is $4 \times 8=32$ bits
- 32 different 1 s and 0 s can be stored
- The smallest and largest: 00000000000000000000000000000000 11111111111111111111111111111111
- The smallest represents 0
- The largest is one less than $1 \underbrace{000000000000000000000000000000000}$
- This equals 2^{32}, thus, the largest value that can be stored as an unsigned int is $2^{32}-1=4294967295$
- Approximately 4 billion

- Sometimes, you don't need to store numbers this large
- Variables declared unsigned short are allocated two bytes
- 2 bytes is $2 \times 8=16$ bits
-16 different 1 s and 0 s can be stored
- The smallest and largest: 0000000000000000 1111111111111111
- The smallest represents 0
- The largest is one less than

$$
1 \underbrace{0000000000000000}_{167 \mathrm{cms}}
$$

- This equals 2^{16}, thus, the largest value that can be stored as an unsigned int is $2^{16}-1=65535$
- Sometimes, you need to store very large numbers
- Variables declared unsigned long are allocated eight bytes
-8 bytes is $8 \times 8=64$ bits
- 64 different 1 s and 0 s can be stored
- The smallest and largest:

ค000 11

- The smallest represents 0
- The largest is one less than
$1 \underbrace{00}$ 64 zeros
- This equals 2^{64}, thus, the largest value that can be stored as an unsigned int is $2^{64}-1=18446744073709551615$
- This 18 billion billion or 18 quintillion

Example

- Consider this program: \#include <iostream>

Note:
\#include <iostream> First, a is upcast to unsigned int
int main();
before to the first addition
// Function definitions
int main() \{
unsigned short a\{42\};
unsigned int $b\{207500\}$;
unsigned long c\{299792458\};
Output:
std::cout << $(\mathrm{a}+\mathrm{b}+\mathrm{c})$ < std: :endl;
return 0;

\}

- On the stack, an appropriate number of bytes are allocated to each variable

8 bytes for C	4 bytes for b	2 bytes for a
\#include <iostream>		
// Function declarations		
int main();		
// Function definitions		
int main() \{		
unsigned short a\{42\};		
unsigned int b\{207500\};		
unsigned long c $\{299792458$ \};		
std: :cout << $(\mathrm{a}+\mathrm{b}+\mathrm{c})$ << std: : endi;		
return 0;		

- Each of these variables is then initialized

	8 bytes for c	4 bytes for b	2 bytes for a
	\#include <iostream>		
	// Function declarations		
	int main();		
	// Function definitions		
	int main() \{		
	unsigned short a\{42\};		
	unsigned int b\{207500\};		
	unsigned long c $\{299792458\}$;		
	std: :cout < $(\mathrm{a}+\mathrm{b}+\mathrm{c})$ << std: : endi;		
	return 0 ;		
	\}		Eceis

- Generally, however, we display the bytes in memory as a column of bytes, the values of which are concatenated
\#include <iostream>
// Function declarations
int main();
// Function definitions
int main() $\underset{\substack{\text { unsigned }}}{ }$
unsigned short $\mathrm{a}\{42\} ;$
unsigned int
$\mathrm{b}\{207500\}$
unsigned long $\{\{299792458\} ;$
std: :cout << $(\mathrm{a}+\mathrm{b}+\mathrm{c})$ << std: : end1;
return 0;
\}

- We have said short, int and long are 2, 4 and 8 bytes
- This is true on most every general-purpose computer
- Unfortunately, the C++ specification doesn't require this
- Fortunately, the sizeof operator gives you this information \#include <iostream>
int main();
int main() \{
std::cout << "An 'unsigned short' occupies "
<< sizeof (unsigned short) <<" bytes" << std::endl;
std::cout << "An 'unsigned int' occupies "
<< sizeof (unsigned int) << " bytes" << std::endl;
std::cout << "An 'unsigned long' occupies
<< sizeof (unsigned long) << " bytes" << std::endl;
return 0;
\}

$$
\begin{aligned}
& \text { Output on ecelinux: } \\
& \text { An 'unsigned short' occupies } 2 \text { bytes } \\
& \text { An 'unsigned int' occupies } 4 \text { bytes } \\
& \text { An 'unsigned long' occupies } 8 \text { bytes }
\end{aligned}
$$

Eximan
 Determining the size of a type

聄
 Wasted space?

- If an integer does not use all the bytes, the remaining bits are never-the-less allocated until the variable goes out of scope
- In general-purpose computing, this is often not a problem
- This is a critical issue, however, in embedded systems
- More memory:
- Costs more
- Uses more power
- Produces more heat

 Memory and initial values

- Fortunately, you get a warning:
example.cpp: In function 'int main()': 'short unsigned int' inside \{ \} [-Wnarrowing]
unsigned short c\{299792458\};
xample.cpp:6:31: warning: large integer implicitly truncated to unsigned type [-Woverflow]
- It still compiles and executes:

The speed of light is $30794 \mathrm{~m} / \mathrm{s}$.

Memory and initial values

- Important:
$\mathcal{A l C}$ unsigned integers are stored:
modulo 2^{16} for unsigned short
modulo 2^{32} for unsigned int
modulo 2^{64} for unsigned long

 Memory and initial values

- Where does 30794 come from?

$$
\frac{\text { c requires } 29 \text { bits }}{00010001110111100111100001001010}
$$

$$
\text { Only } 16 \text { bits are allocated }
$$

- The binary number 0 b111100001001010 equals 30794 in base 10

 Memory and arithmetic

- What happens if the sum, difference or product of two integers exceeds what can be stored? tinclude <iostream>
int main();
int main() \{
unsigned short $\mathrm{m} 1\{40000\}, \mathrm{m} 2\{42000\}$;
int n1\{40000\}, n2\{42000\};
unsigned short $\operatorname{sum}\{m 1+m 2\}$, diff $\{m 1-m 2\}$, $\operatorname{prod}\{m 1 * m 2\}$;
std::cout << sum << "\t" << (n1 + n2) << std::endl; std::cout << diff << "\t" << (n1 - n2) << std::endl; std::cout << prod << " $\backslash \mathrm{t} " \ll(n 1 * n 2)$ << std::endl;
return 0;
1646482000
$63536-2000$
501761680000000
- Let's look at the actual values and the evaluated results:

16464	0100000001010000
82000	10100000001010000
63536	1111100000110000
-2000	-0000011111010000
50176	1100010000000000

16800000001100100001000101100010000000000

- For the sum and product, the result ignores the higher-order bits - The negative number is a little odd....

- Important:
$\mathcal{A} l l$ unsigned integers arithmetic is performed:
modulo 2^{16} for unsigned short
modulo 2^{32} for unsigned int
moduto 2^{16} for unsigned shor
modulo 2^{32} for unsigned int
modulo 2^{64} for unsigned long
- This is similar to all clock arithmetic being performed modulo 12

 Memory and arithmetic

Memory and arithmetic

- What happens if the sum, difference or product of two integers exceeds what can be stored?
include <iostream>
int main();
int main() \{
unsigned
unsigned short smallest $\{0\}$, largest $\{65535\}$;
std::cout << "Smallest: " << smallest << std::endl; std::cout << "Largest: " << largest << std::endl;
--smallest;
Hargest,
std::cout << "Smallest minus 1: " << smallest << std::endl std::cout << "Largest plus 1: " << largest << std::endl

```
return 0; Output:
} Smallest: 0
                                    Lmallest: 0
                                    Largest: 65535
                                    Smallest minus 1: 6553
                                    Largest plus 1: 0
```


- Addition is easy:
- Like in elementary school, line them up and occasionally you require a carry in the next column:
- The rules are:
- $0+0 \rightarrow 0$
- $0+1 \rightarrow 1$
- $1+1 \rightarrow 10 \rightarrow 0$ with a carry of 1
- $1+1+1 \rightarrow 11 \rightarrow 1$ with a carry of 1
- For example, adding two unsigned short:

0101000111010110
$39620 \xrightarrow{(1110110010011010}$

- What if we go over? Adding these two unsigned short:

$$
\left.39620 \xrightarrow{\substack{1 \\
1101000111010110 \\
\hline}} \begin{array}{l}
\text { 1001101011000100 } \\
10110110010011010
\end{array}\right)
$$

- The additional bit is discarded-addition is calculated modulo 2^{16}
- Thus, the answer is 110110010011010 which is 27802
- Going back to the clock
- Subtracting 10 is the same as adding 2
- Subtracting 4 is the same as adding 8
- Subtracting 9 is the same as adding 3
- Thus, to subtract n, add $12-n$

- In our case, to subtract n, add $65536-n$

[^0]

- Subtraction is more difficult:
- Like in elementary school, you learned to "borrow", but borrowing may require you to look way ahead:
- Our salvation: we are performing arithmetic modulo 65536

- The million-dollar question:

How do you calculate 65536 - n ???

- Subtract any number from 9999999999999 , no borrows are needed

$$
9999999999999
$$

$-\underline{5501496383498}$
4498503616501

- Thus, to calculate $10000000000000-n$, instead calculate
$(10000000000000-1)-n+1=(9999999999999-n)+1$
- For example:

This is called the base-10 complement or " 10 's complement" this is how older adding machines performed subtraction 498503616502

- In binary, the equivalent is base-2 complement or " 2 's complement"
- To calculate 65536 - 1970, calculate ($65535-1970$) + 1:

$$
1111111111111111
$$

- 0000011110110010

1111100001001101
$+$ \qquad

- Thus, to calculate 2018-1970, just add the 2's complement of 1970 to 2018:

0000011111100010

$+\frac{1111100001001110}{}$

- This is the binary representation of $48=2^{5}+2^{4}=32+16$
- Remember, we ignore the leading 1
- There is a faster way to compute it without the addition:
- Scan from right-to-left
- Find the first 1 , and then flip each bit to the left of that
- The 2's complement of each of the following is given below it

1011011111011111
0100100000100001
0100100000100001
1010111111100000
0101000000100000
0000100100101100
1111011011010100

 2's complement

- To calculate the 2's complement:

1. Complement all of the bits in the number

- This includes leading zeros

2. Add 1

- For example, the 2's complement of the speed of light is stored as an unsigned int is

00010001110111100111100001001010 11101110001000011000011110110101
$+$ \qquad
11101110001000011000011110110110

- The 2's complement of 0 stored as an unsigned int is 00000000000000000000000000000000 11111111111111111111111111111111
$+$
000000000000000000000000000000
- This makes sense: any number minus zero is unchanged
- The 2's complement algorithm is self-inverting:
- If n is a number, then $2^{16}-\left(2^{16}-n\right)=n$
- The 2's complement of the 2's complement of a number is the number itself

1110110010111110
0001001101000001
$+$
0001001101000010
1110110010111101
$+\frac{1}{1110110010111110}$

- That is, $f^{-1}=f$ or $f(f(n))=n$
- We have the following:
- Unsigned integers are stored as either 1,2,4 or 8 bytes
- The value is stored in the binary representation

Type	Bytes	Bits	Range	Approximate Range
unsigned char	1	8	$0, \ldots, 2^{8}-1$	$0, \ldots, 255$
unsigned short	2	16	$0, \ldots, 2^{16}-1$	$0, \ldots, 65535$
unsigned int	4	32	$0, \ldots, 2^{32}-1$	$0, \ldots, 4.3$ billion
unsigned long	8	64	$0, \ldots, 2^{64}-1$	$0, \ldots, 18$ quintillion

- You should not memorize the exact ranges

 Signed types

- We've seen that short, int and long all allows you to store both positive and negative integers
- How do we store such negative numbers?
- Because we have two choices (positive or negative), we could use one bit to represent the sign: 0 for positive, 1 for negative
- For example:

```
The sign bit
```


32767

2 1 - 0000000000000001 1000000000000000 -11000000000000001 -2 1000000000000010 -32768 1111111111111111

$$
\begin{aligned}
& -0=0 \text {, so do we } \\
& \text { have two zeros? } \\
& \text { Eceryo }
\end{aligned}
$$

5ximan Signed types

- This is similar to marking the hours of a clock as follows:

- Unfortunately, this leads to ugly arithmetic operations...

$$
\begin{array}{ll}
-1+1=0 \text { or }-0, & \text { but } 7+1=8 \\
-5+2=-3, & \text { but } 11+2=1
\end{array}
$$

- A better solution:

- Note that
$-1+1=0$, but also $11+1=0$
$-5+2=-3$, but also $7+2=9$, which we are equating to -3

2
 Signed integers

- Here is a workable solution:
- If the leading bit is 0 :
- Assume the remainder of the number is the integer represented
- For short, this includes

0000000000000000
$0111111111111111 \quad 2^{15}-1=32767$

- This includes $2{ }^{15}$ different positive numbers
- If the leading bit is 1 :
- Assume the number is negative and its magnitude can be found by applying the 2 's complement algorithm
- Recall the 2's complement algorithm is self-inverting

Signed integers

- For negative numbers stored as a short:

1000000000000000
0111111111111111
$+$
1000000000000000

- This is the representation of the largest negative number: -2^{15}

1111111111111111
0000000000000000
$+$
0000000000000001

- This is the representation of the smallest negative number: -1

Signed integers

- For example, 1111111111010110 is a negative short 1111111111010110 0000000000101001
$+$ 0000000000101010
- Thus, it represents -42
- Let's calculate $-42+91=49$ and $-42-91=-133$:

1111111111010110
$+\underline{0000000001011011}$
$10000000000110001>49$
1111111111010110 \qquad
$+\underline{1111111110100101}$
$11111111101111011<-133$

52m Signed integers

- Here, you can compare these two techniques
- In both cases, we go from $-12 / 2$ to $12 / 2-1$ and $-2^{16} / 2$ to $2^{16} / 2-1$

10090

- To summarize:
- Integer types are stored as either 1, 2, 4 or 8 bytes
- Negative numbers are stored in the 2's complement representation

Type	Bytes	Bits	Range	Approximate Range
unsigned char	1	8	$0, \ldots, 2^{8}-1$	$0, \ldots, 255$
unsigned short	2	16	$0, \ldots, 2^{16}-1$	$0, \ldots, 65535$
unsigned int	4	32	$0, \ldots, 2^{32}-1$	$0, \ldots, 4.3$ billion
unsigned long	8	64	$0, \ldots, 2^{64}-1$	$0, \ldots, 18$ quintillion
signed char	1	8	$-2^{7}, \ldots, 2^{7}-1$	$-128, \ldots, 127$
short	2	16	$-2^{15}, \ldots, 2^{15}-1$	$-32768, \ldots, 32767$
int	4	32	$-2^{31}, \ldots, 2^{31}-1$	-2.15 billion, $\ldots, 2.15$ billion
long	8	64	$-2^{63}, \ldots, 2^{63}-1$	-9 quintillion, $\ldots, 9$ quintillion
$\infty \varrho 8$				

- While common, the C++ standard does not require these sizes:
- Each compiler may choose sizes so long as the following are true assert (sizeof(char) == 1);
assert(sizeof(short) >= 2); // At least 16 bits assert(sizeof(int) >= sizeof(short));
// At least as large as 'short'
assert (sizeof(long) >= 4); // At least 32 bits assert(sizeof(long long) >= 8); // At least 64 bits
- In GNU g++, the sizes are as we have described in this slide deck
- In Microsoft Visual Studio, however:
- A long is only four bytes (same as int)
- A long long is eight bytes
- We do not use long long in this course
- You may have to use it if you program in Visual Studio

[1] Wikipedia
https://en.wikipedia.org/wiki/Integer (computer science)
https://en.wikipedia.org/wiki/Two\'s complement

Summary

- Following this lesson, you now
- Understand the representation of unsigned integers
- Know how to perform subtraction using 2's complement
- Similar to 10's complement used a century ago
- Understand that signed integers store negative numbers in their 2's complement representation
- Know that char is actually just an integer type
- It can be interpreted as a printable character if necessary
- Understand the ranges stored by char, short, int and long

Theresa DeCola and Charlie Liu.

These slides were prepared using the Georgia typeface. Mathematical equations use Times New Roman, and source code is presented using Consolas.

The photographs of lilacs in bloom appearing on the title slide and accenting the top of each other slide were taken at the Royal Botanical Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see
https://www.rbg.ca/

These slides are provided for the ECE 150 Fundamentals of Programming course taught at the University of Waterloo. The material in it reflects the authors' best judgment in light of the information available to them at the time of preparation. Any reliance on these course slides by any party for any other purpose are the responsibility of such parties. The authors accept no responsibility for damages, if any, suffered by any party as a result of decisions made or actions based on these course slides for any other purpose than that for which it was intended.

[^0]: - The answer is 0010010110001011

